62 research outputs found

    Balancing renewable energy and river resources by moving from individual assessments of hydropower projects to energy system planning

    Get PDF
    As governments and non-state actors strive to minimize global warming, a primary strategy is the decarbonization of power systems which will require a massive increase in renewable electricity generation. Leading energy agencies forecast a doubling of global hydropower capacity as part of that necessary expansion of renewables. While hydropower provides generally low-carbon generation and can integrate variable renewables, such as wind and solar, into electrical grids, hydropower dams are one of the primary reasons that only one-third of the world’s major rivers remain free-flowing. This loss of free-flowing rivers has contributed to dramatic declines of migratory fish and sediment delivery to agriculturally productive deltas. Further, the reservoirs behind dams have displaced tens of millions of people. Thus, hydropower challenges the world’s efforts to meet climate targets while simultaneously achieving other Sustainable Development Goals. In this paper, we explore strategies to achieve the needed renewable energy expansion while sustaining the diverse social and environmental benefits of rivers. These strategies can be implemented at scales ranging from the individual project (environmental flows, fish passage and other site-level mitigation) to hydropower cascades to river basins and regional electrical power systems. While we review evidence that project-level management and mitigation can reduce environmental and social costs, we posit that the most effective scale for finding balanced solutions occurs at the scale of power systems. We further hypothesize that the pursuit of solutions at the system scale can also provide benefits for investors, developers and governments; evidence of benefits to these actors will be necessary for achieving broad uptake of the approaches described in this paper. We test this hypothesis through cases from Chile and Uganda that demonstrate the potential for system-scale power planning to allow countries to meet low-carbon energy targets with power systems that avoid damming high priority rivers (e.g., those that would cause conflicts with other social and environmental benefits) for a similar system cost as status quo approaches. We also show that, through reduction of risk and potential conflict, strategic planning of hydropower site selection can improve financial performance for investors and developers, with a case study from Colombia

    Exact Bayesian curve fitting and signal segmentation.

    Get PDF
    We consider regression models where the underlying functional relationship between the response and the explanatory variable is modeled as independent linear regressions on disjoint segments. We present an algorithm for perfect simulation from the posterior distribution of such a model, even allowing for an unknown number of segments and an unknown model order for the linear regressions within each segment. The algorithm is simple, can scale well to large data sets, and avoids the problem of diagnosing convergence that is present with Monte Carlo Markov Chain (MCMC) approaches to this problem. We demonstrate our algorithm on standard denoising problems, on a piecewise constant AR model, and on a speech segmentation problem

    Statistical Analysis of Molecular Signal Recording

    Get PDF
    A molecular device that records time-varying signals would enable new approaches in neuroscience. We have recently proposed such a device, termed a “molecular ticker tape”, in which an engineered DNA polymerase (DNAP) writes time-varying signals into DNA in the form of nucleotide misincorporation patterns. Here, we define a theoretical framework quantifying the expected capabilities of molecular ticker tapes as a function of experimental parameters. We present a decoding algorithm for estimating time-dependent input signals, and DNAP kinetic parameters, directly from misincorporation rates as determined by sequencing. We explore the requirements for accurate signal decoding, particularly the constraints on (1) the polymerase biochemical parameters, and (2) the amplitude, temporal resolution, and duration of the time-varying input signals. Our results suggest that molecular recording devices with kinetic properties similar to natural polymerases could be used to perform experiments in which neural activity is compared across several experimental conditions, and that devices engineered by combining favorable biochemical properties from multiple known polymerases could potentially measure faster phenomena such as slow synchronization of neuronal oscillations. Sophisticated engineering of DNAPs is likely required to achieve molecular recording of neuronal activity with single-spike temporal resolution over experimentally relevant timescales.United States. Defense Advanced Research Projects Agency. Living Foundries ProgramGoogle (Firm)New York Stem Cell Foundation. Robertson Neuroscience Investigator AwardNational Institutes of Health (U.S.) (EUREKA Award 1R01NS075421)National Institutes of Health (U.S.) (Transformative R01 1R01GM104948)National Institutes of Health (U.S.) (Single Cell Grant 1 R01 EY023173)National Institutes of Health (U.S.) (Grant 1R01DA029639)National Institutes of Health (U.S.) (Grant 1R01NS067199)National Science Foundation (U.S.) (CAREER Award CBET 1053233)National Science Foundation (U.S.) (Grant EFRI0835878)National Science Foundation (U.S.) (Grant DMS1042134)Paul G. Allen Family Foundation (Distinguished Investigator in Neuroscience Award

    Partners No More: Relational Transformation and the Turn to Litigation in Two Conservationist Organizations

    Get PDF
    The rise in litigation against administrative bodies by environmental and other political interest groups worldwide has been explained predominantly through the liberalization of standing doctrines. Under this explanation, termed here the floodgate model, restrictive standing rules have dammed the flow of suits that groups were otherwise ready and eager to pursue. I examine this hypothesis by analyzing processes of institutional transformation in two conservationist organizations: the Sierra Club in the United States and the Society for the Protection of Nature in Israel (SPNI). Rather than an eagerness to embrace newly available litigation opportunities, as the floodgate model would predict, the groups\u27 history reveals a gradual process of transformation marked by internal, largely intergenerational divisions between those who abhorred conflict with state institutions and those who saw such conflict as not only appropriate but necessary to the mission of the group. Furthermore, in contrast to the pluralist interactions that the floodgate model imagines, both groups\u27 relations with pertinent agencies in earlier eras better accorded with the partnership-based corporatist paradigm. Sociolegal research has long indicated the importance of relational distance to the transformation of interpersonal disputes. I argue that, at the group level as well, the presence or absence of a (national) partnership-centered relationship determines propensities to bring political issues to court. As such, well beyond change in groups\u27 legal capacity and resources, current increases in levels of political litigation suggest more fundamental transformations in the structure and meaning of relations between citizen groups and the state

    Who killed in Rwanda’s genocide? Micro-space, social influence and individual participation in intergroup violence

    Get PDF
    In episodes of intergroup violence, which group members participate and which do not? Although such violence is frequently framed as occurring between distinct ethnic, racial or sectarian groups, it is easily overlooked that it is usually only a subset of the group’s members who in fact participate in the violence. In predicting participation, extant research has privileged an atomistic approach and identified individual attributes indicative of a predisposition to violence. I suggest instead that a situational approach should complement the atomistic paradigm and present evidence that an individual’s micro-spatial environment is an important predictor of differential participation in intergroup violence. Using GIS data on 3,426 residents from one community, I map the household locations of participants, non-participants, and victims of Rwanda’s 1994 genocide. I find that participants are likely to live either in the same neighbourhood or in the same household as other participants. Specifically, as the number of violent to nonviolent individuals in an individual’s neighbourhood or household increases, the likelihood of this individual’s participation also increases. In explaining these neighbourhood and household effects, I suggest social influence is the mechanism at work. As micro-spatial distance decreases, micro-social interaction increases. Neighbours and household members exert influence for and against participation. Participation then may be as much the product of social interaction as of individual agency. What neighbours and family members think, say and do may influence participation in collective action such as intergroup violence. The conceptualization of neighbourhoods and households as micro-spheres of influences suggests the importance of social structure as a determinant of participation
    corecore